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A P P R O X I M A T E  A N A L Y T I C A L  CALCULATION OF T H E  M A C H  C O N F I G U R A T I O N  

OF STEADY S H O C K  WAVES IN A P L A N E  C O N S T R I C T I N G  C H A N N E L  

A.  E. M e d v e d e v  a n d  V .  M .  F o m i n  UDC 533.601.15 

An approzimate anal~ical model for calculation of the parameters of a steady gas flow inside a 
plane constricting channel formed by two symmetrically positioned wedges is suggested. A Much 
configuration of shock waves (triple point) is formed in the channel when the wedge angles 
are larger than some critical value. The flow calculation in a constricting channel reduces 
to the solution of the iterative problem for a system of nonlinear algebraic equations. The 
configurations of shock waves, the slipstream, and the sonic line are described by the proposed 
model of a gas flow. A comparison of the results obtained using this model allows a fairly 
accurate calculation of the Much stem and the length of the subsonic-flow region. 

Flow studies in constricting channels formed by two symmetrically positioned wedges have been 
performed owing to the interest in the problems of nonunique determination of the transition criteria from 
regular to irregular (Mach) reflection of an oblique shock wave from the symmetry plane [1-3]. Avoiding the 
problem of the choice of the critical angle of the wedge (the wedge angle is assumed to be larger than the 
critical value) and assodated problems, we should note that the qualitative pattern of Much reflection in the 
channel is not yet clear. An engineering approach [4, 5] gives good agreement with experimental results for 
the height of the Much stem, but underestimates the length of the subsonic region behind the Much stem 
since the model is approximate [2]. Li and Ben-Dor [6] analytically calculated the interaction of an expansion 
fan formed on the trailing edge of the wedge with the reflected shock wave and contact discontinuity. After 
that, the position of the throat of a one-dimensional nozzle is refined for calculation of the height of the Mach 
stem on the basis of the model [5]. 

We consider a plane channel formed by two symmetrically positioned wedges. A supersonic gas flow 
comes from the left. Since the problem is symmetric, we consider only the upper half-plane with the wedge 
ABG and the symmetry axis ON (Fig. 1). In Fig. 1, T is the triple point, AT is the attached shock wave, 
TO is the normal shock wave, i.e., the Much stem, TF is the oblique shock wave, TE is the slipstream, GF 
is the first characteristic of the expansion fan, FE is the first characteristic of the expansion fan refracted 
on the shock wave TF, EN is the sonic line, and 1-4 are the gas-flow regions. The linear dimensions of the 
problem are the entrance half-section of the channel Y1, the height of the Much stem Ym, the wedge length 
L, the distance Y. from the axis of symmetry to the slipstream, the length L. of the subsonic-flow region 
formed by the axis of symmetry and the contact discontinuity, between the normal shock wave TO and the 
sonic line EN, a~d the distance P between the shock wave TO and the trailing edge of the wedge BG (P > 0 
if the Mach stem is located downstream of the trailing edge of the wedge, otherwise P < 0). The angular 
parameters of the problem are the wedge angle 0, the angle of the attached shock wave//, the inclination 
angle e of the slipstream at the point T, the inclination angle 02' of the shock wave TF at the point T, and 
the angle 8F between the shock wave TF and the characteristic GF. In addition, the free-stream parameters, 
namely, velocity ~ ,  Much number Mh and pressure P1, are known. 

In accordance with Fig. 1, the model is based on the following assumptions. 
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Fig. 1 

(l) The wedge angle is larger than the critical value, and a configuration with the triple point T is 
formed; here the angle is l / >  ~N, where l/t; is found from the equation [7] 

cot 4 ~ t ~  - -7~2(~ + ~2) + (1 - ~)2 coo ~t; -7(~ + ~2) = o, 

(p2 = ('Y -- 1)/(-7+ 1), ~ = P1/P2, -7 is the ratio of the specific heats and PI and P2 are the pressures upstream 
and downstream of the oblique shock wave AT, respectively). 

(2) The wedge is rather short, and the wedge length L is such that the shock wave TF is not incident 
on the wedge side AG. 

(3) The shock waves AT and TO are straight, the wave TF is curved, and the sonic line EN is straight. 
(4) The first characteristic of the expansion wave FE crosses the slipstream TE at the point E of the 

sonic line EN. 
Let the wedge (the length L and the angle 0) and the free-stream (the pressure Ph the velocity T~, 

and the Mach number MI) parameters be specified in region 1 (Fig. 1). 
The solution in region 2 is found analytically from known relations [7]. The angle of inclination of the 

attached shock wave 0 is determined from the equation 

_ ( 1 )  o = arccot l t2(  

The Mach number M2 and the pressure P2 are calculated from the formulas 

I 2+(-7-1)MIZ 2M~cos', p2=[ 2-7 (M~sin2~_l)+llP1. (2) 
M 2 -  2 - 7 ~ 1 2 ~ - - ~ - ~ - - i )  -l- ( -7_ l )M~sin2~+ 2, 

To find the angle ~, we adopt the usual condition of equal pressures on both sides of the slipstream: 

P30 = P40. 

Here P40 = {[2-7/('/+ 1)](M 2 - 1) + I}PI is the pressure behind the shock wave TO in region 4, and P30 = 
{[27/(-7 + I)](M 2 sin 2/~2a - 1) + 1}P2 is the pressure behind the shock wave TF. 

From here we find the angle between the shock wave TF and the velocity vector ~ at the point T: 

1 ,/-7-1-1 (P3o-1) + 1}. (3) ~23 ar~in 
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Then we have 

~ = O-a r cco t{ [  (7 + 1)M22 - 11 tanf123}. (4) 21) 
The angle 0T of TF inclination to the x-axis (at the point T) and the angle OF between the first 

characteristic GF of the expansion wave and the z axis are as follows: 

1 
0 T  = fl23 - -  0,  O F = arcsin M22 + 0. (5) 

We consider the gas-flow region TOEN (Fig. 1) within the framework of the model of a one-dimensionai gas 
flow in a variable-section channel. 

The gas flow behind TF in region 3 is supersonic. The gas flow in region 2 has no vortices; then, 
according to [8, 9], the flow in region 3 behind the shock wave TF (for a small curvature of TF, which will be 
shown below) remains vortex-free, i.e., potential. For such a flow, when the conditions on the characteristic 
FE and the contact boundary TE are set, an approximate analytical solution [10] based on Khristianovich's 
approximation [11] of the Chaplygin function is known. 

For the solution of this problem in region 4, we have the following system of equations: 
the height of the Mach stem is 

Ym 1 [ 2 ( ~ _  1M 2 ~](~'+l)/2('r-1)y, 
L - M40 ~ 1 + - - ~  40)J "~- 

and the channel length is 

T = ' Z" cot . 

Having found the height Ym/L,  we determine the quantity P / L ,  as in [4], from the equation 

P (Y t /L  - Ym/L)  + (tan 0 - tan fl) 
L tan f~ ' 

wh~re Yt / L = YI / L - ta~ 0. 
From the solution in region 4, we can find the coordinates of the slipstream TE 

y / L  = Ym/L  - (x/L) tan 

(z is the distance from the point O along the symmetry axis), 
the pressure on the TE 

, 2 

where 

is the pressure on'the sonic line EN; 
the Mach number M4 in region 4 is found from the equation 

Y 1 [ 2 ( ~ )]  (-r+])/2(-r-]) y, 
Z = M 4  ~ 1+  M~ T ;  

and the Mach number on the TE from the side of region 3 

Ma2= 2 [ ( p ~ ( ' r - ' ) / ' r _ l ] .  
"y 1 t\p,~ / 

(6) 

(7) 

(s) 

(9) 

(io) 

(11) 

(12) 
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Fig. 3 

Here 

2 + ( ? -  1)M  
M3o --- 2 ? M ] ~ n - ~ -  ~ - ~ ' ~ _  1) (? - 1)M~sin 2 fl23 + 2 

+ 2M~ cos 2 &3 

is the Mach number  behind the  shock wave TF.  
In region 3 we introduce the  characteristic variables ~ and r/: 

= 0.5(~" + 0 ) ,  '7 = 0 .50 "  - ,~), 

where ~ = 1 - h a r c t a n ( z / h ) +  arctan z, z = ~/(A 2 - 1)/(1 - A2/h2), h = ~/(7 + 1) / (?  - 1), and 0 is the angle 
of inclination of the  velocity vector to the = axis. 

We consider the  characteristic triangle TKE (Fig. 2) formed by the characteristics TK (~ = ~l = const) 
and KFE (T/= T/i = const).  The  functions T/= wl(~) and ~ = omz(r/) are determined on the line TE from Eqs. 
(9)-(11); then the  equation for the  slipstream TE is 

= = =1(~) = Z2(~),  Y --" Y l (~ )  = Y2(~). (13) 

The solution of the Cauchy problem for the region TKEF bounded by the characteristics TK and KFE and 
the streamline T E  (slipstream) is given by the formulas [10] 

~o(~) + r - tan 2~/- ~o(~) + tan P.~. r 
x = tan 2~ + tan 2z/' Y = tan 2~ + tan 2T/ ' (14) 
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TABLE 1 

Y /w 

0.0030 
0.0186 
0.0360 
0.0554 
0.0773 
0.1020 
0.1299 

0.00075 
0.0058 
0.0122 
0.0201 
0.0297 
0.0409 
0.0542 

(model [4]) 

0.0029 
0.0180 
0.0349 
0.0539 
0.0754 
0.0998 
0.1275 

0.0004 
0.0032 
0.0072 
0.0124 
0.0190 
0.0272 
0.0373 

Difference, 
% 

3.45 
3.33 
3.15 
2.78 
2.52 
2.20 
1.18 

90.00 
81.25 
69.44 
62.10 
56.32 
50.37 
45.31 

L./L 

0.2154 
0.2310 
0.2483 
0.2674 
0.2884 
0.3118 
0.3373 

0.0830 
0.0978 
0.1117 
0.1274 
0.1444 
0.1620 
0.1815 

L,/L 
(model [41) 

0.1910 
0.2049 
0.2203 
0.2375 
0.2565 

0.2777 

0.3013 

0.0403 
0.0500 
0.0606 
0.0724 
0.0853 
0.0994 
0.1150 

Difference, 
% 

12.77 
12.74 
12.71 

12.59 
12.44 

12.28 
11.95 

106.0 
95.60 
84.32 
75.97 
69.28 
62.98 
57.83 

k T F  

0.0040 
0.0040 
0.0040 
0.0041 
0.0042 
0.0042 
0.0043 

0.0030 
0.0031 
0.0032 
0.0032 
0.0032 
0.0033 
0.0034 

where 

~0(~) ----- [Yl(~) -- ta~12~. Zl(~)][ta~l 2~ -{- ta/1 ~1(~)]  
- t a n  (T) - t a n  

~(~) ---- [y2(~/) Jr t a n 2 q ,  zz(T/)][tan2w2(~/) + tan 2T/] 

tan 2w2(r/) -I- tan 2r/ 

The system of nonlinear equations (1)-(14) yields a solution of the problem of determination of the 
flow parameters with the  Math  shock-wave configuration shown in Fig. 1. 

The  shock wave T F  (Fig. 2) is constructed under the  condition of compatibil i ty of the  solutions in 
region~ 2 and 3. The  position of the curved shock wave T F  is determined from the  known velocity field in 
region 3 and initial angle of inclination 07" of the shock wave at the point T. A vortex flow is observed behind the 
curved shock wave TF.  We determine the mean curva ture / (TF of the  shock wave TF:  A'TF ---- LTF/(27rRTF ). 
Here LTF is the length of the  curve TF,  and/~TF is the  mean (over the  length of the  curve TF)  radius of the 
circumferences which have at least the second-order tangency with the curve T F  at each point on TF. We 
note that  R - 0 for a straight line and R - 1 for a circle. 

Calculation results of the  height of the Mach stem Ym/w and the length L./L of the subsonic region 
4, which were a t ta ined using our model and the model of [4], are listed in Table 1 for two values of M1 and 
various values of the  angle ~ (Y~/L = 0.37 and ~f = 1.4). The  last column gives the  mean curvature /~TF 
calculated using our model. It is seen that  the mean curvature ~'TF of the shock wave T F  is small. The main 
deviation from the angle 0T occurs near the point F. This is due to a drastic decrease in pressure at the 
slipstream TE near the  sonic point  E [8]. For a small curvature of the  shock and a weak shock wave, according 
to [12] the flow vorticity behind the shock wave is a third-order quantity, as compared with disturbances of 
the gas velocity. Thus,  the  flow in region 3 can be considered vortex-free, i.e., potential ,  to a high accuracy. 

Figure 3 compares experimental  results [1] (points) and calculated data  (curves) for the reduced height 
of the Mach stem; here w -- L~ cos 0. Experiments [1] and calculations were performed for ~f = 1.4 and 
Yt/L = 0.37. The  calculations by the model of [4] for these parameters (Fig. 3) yield very close results for the 
height of the Mach s tem (see Table 1). The  discrepancy between the  results obtained using the present model 
and the model of [4] is observed in the values of the length L./L of the subsonic region 4, and the difference 
in the values of the  height of the Mach stem is significant only at high Math numbers.  
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A comparison of the calculation results obtained using the present model and the model of [4] showed 
(see Table 1) that, for moderate Mach numbers (MI < 10), the difference in Ym/W is as small as a few 
percent. The calculations by both models give close results if the initial conditions described in [1] are used. 
The difference in L,/L for M1 < 10 is approximately 12%. For M1 = 10, the difference in Y,n/w for these 
models is between 50 and 90%, and the difference in L./L is between 50 and 100%. 

It is seen from the results of direct numerical simulation of the flow [2] in the geometry considered (see 
Fig. 1) that the length L./L is larger than that calculated by the model of [4] and is close to that calculated 
using our model. 

A comparison with the experimental data of [1] (Fig. 3) demonstrated good agreement of the calculated 
and experimental data for M1 = 2.84 and 3.49. For M1 = 3.98 and 4.96, the results diverge as the angle fl 
increases. This is caused by the approximate character of the proposed model: at large values of M1 one 
should take into account the nondimensionality of the gas flow in region 4 and the viscosity at the contact 
discontinuity TE (see Fig. 1). It is noteworthy that, for M1 = 3.98 and 4.96, the height of the Mach stem 
predicted by the model that we presented is by 2-4% greater than that predicted by the model of [4]. 
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